Back To Top
Nguồn gốc của toán học cũng như các ngành khoa học đều là các vấn đề thực tiễn mà loài người cần tìm hiểu để cải thiện cuộc sống. Nhu cầu thực tiễn là nền tảng của sự phát triển toán học. Ngược lại, toán học cũng có tác dụng mạnh mẽ đối với thực tiễn đời sống, sản xuất và các ngành khoa học kỹ thuật khác.
Lịch sử của Toán học gắn liền với sự phát triển của loài người, những khái niệm được hình thành hầu hết xuất phát từ đời sống thực tiễn, từ nhu cầu tìm tòi và khám phá của con người. Một số khái niệm được đưa ra không hẳn đã có những ứng dụng trong thực tế nhưng lại là cầu nối hay một công cụ tính toán dẫn đến những định luật và định lý vô cùng quan trọng.
Thời xưa khi con người chưa có sự hỗ trợ của máy móc nên bản thân các bài toán phát sinh chỉ là các bài đơn giản, số lượng tính toán là cỡ nhỏ, vì vậy các công cụ toán để sử dụng cũng là những công thức vô cùng đơn giản và sơ khai như phép cộng, phép chia, hay khai căn một cách gần đúng….
Chúng ta hãy cùng xét một số ví dụ sau:
1. Một người trồng cây trong vườn, anh ta cố gắng trang hoàng cho cái vườn thật đẹp, vì vậy tất cả các cây anh trồng đều rất thẳng hàng và thẳng cột. Sau một tuần hoàn thành rất vất vả, chợt nhìn lại mảnh vườn của mình, anh không biết đã trồng được bao nhiêu cây. Anh ta sẽ phải đếm từng gốc cây cho đến hết vườn khi các khái niệm về số đếm, phép nhân, phép cộng chưa ra đời.
2. Một ví dụ kinh điển cho sự ra đời ngành hình học thời Ai cập cổ đại đấy là việc chia ruộng cho người dân. Nếu không có sự ra đời các khác niệm chiều dài, chiều rộng, diện tích, thể tích, và số đo góc, có lẽ những người Ai cập khó có thể phân chia ruộng một cách công bằng.
3. Để đo chiều cao của một cái cột hoặc chiều cao một kim tự tháp ở Ai Cập không lẽ ta phải chèo lên tận đỉnh cột (tháp) để đo? Khi có các kiến thức về ứng dụng của lượng giác và tam giác đồng dạng thì việc đo sẽ trở nên vô cùng dễ dàng.
Đây là những ví dụ rất đơn giản và đời thường cho thấy phần nào mối tương quan giữa toán học và cuộc sống. Ngày nay, cùng với sự hỗ trợ của máy tính, toán học trở nên phức tạp và trừu tượng hơn nhưng phạm vi ứng dụng của nó cũng rộng lớn hơn nhiều.
Rất nhiều tiến bộ của khoa học kĩ thuật chỉ giải quyết được trên cơ sở những tiến bộ của vật lí, tuy nhiên ngành này lại liên hệ mật thiết với toán học. Phương pháp của toán học đã giúp cho cơ học vật lý và thiên văn đi sâu vào bản chất các quy luật của tự nhiên, có thể đoán trước được các kết quả còn ẩn sau giới hạn của sự hiểu biết. Nhờ quy luật toán học mà Leverier và Adam (thế kỷ 19), Lorentz (thế kỷ 20) đã xác định được trên lý thuyết sự tồn tại của hai hành tinh mới Hải Vương Tinh và Diêm Vương tinh. Lý thuyết này đã được quan sát thiên văn xác nhận sau đó. Bằng phương pháp vật lý toán, Macxoen đã xác định được sự tồn tại của áp lực ánh sáng và rồi sau đó Lêbedép đã xác nhận kết quả đó bằng thực nghiệm.
Các thành tựu to lớn như năng lượng nguyên tử, động cơ phản lực, vô tuyến điện ... đều gắn liền với sự phát triển của ngành toán học như hình học phi Ơclid, đại số, hàm phức, hàm thực, phương trình vi phần, xác suất thông kê v.v... Hay lý thuyết về các dạng không gian của không gian hình học được áp dụng trong điện động học và điện kỹ thuật. Những định lý tổng quát của hàm phức là cơ sở của lý thuyết thủy động học và khí động học mà đây là hai ngành lý thuyết cơ sở của kỹ thuật hàng hải và hàng không.
Cùng với ứng dụng thông qua cơ học và vật lý, những ứng dụng thông qua điều khiển học tăng lên không ngừng và ngày càng quan trọng. Có thể nói bất kỳ tiến bộ nào của tự động hoá cũng không thể tách rời những thành tựu của toán học. Ví dụ như việc thiết kế và sử dụng các máy tự động, các hệ thống điều khiển và liên lạc đòi hỏi phải dựa trên những thành tựu của logic toán, thông tin học, đại số, lý thuyết độ tin cậy... Đặc biệt phương pháp mô hình được sử dụng rộng rãi và có hiệu quả đối với các quá trình điều khiển. Trên mô hình người ta có thể nghiên cứu vài giờ một quá trình diễn biến hàng năm, nghiên cứu những quá trình không thể làm thí nghiệm trên vật thực, do đó có thể dự đoán và khống chế được chúng.
Một lĩnh vực nữa cho thấy toán học và cuộc sống có mối quan hệ mật thiết với nhau đó là trong các vấn đề tổ chức và quản lý sản xuất. Thông thường trước mọi vấn đề quản lý sản xuất người ta có thể đưa ra nhiều phương án. Vậy làm thế nào để có thể chọn được phương án tốt nhất (Optiman)?. Ngày nay có cả một khoa học về vấn đế đó là vận trù học, nó sử dụng rộng rãi các thành tựu của các ngành toán học mới như: Lý thuyết chương trình tuyến tính, lý thuyết đô thị, lý thuyết trò chơi ... Tuy ra đời chưa lâu nhưng vận trù học đã cho thấy nhiều tác dụng to lớn đối với sản xuất, giao thông vận tải và quốc phòng.
Một nét nổi bật nữa là ngày nay toán học đã xâm nhập vào nhiều ngành mà trước đây người ta không hề nghĩ tới, chẳng hạn như hoá học và sinh học. Đây là hai ngành trước đây ít sử dụng đến toán học thì nay nhiều bộ phận của chúng đã sử dụng nhiều ngành hiện đại của toán học, như thông tin, tô pô, máy tính điện tử. Bằng phương pháp toán học người ta có thể dự đoán được tính chất của các hợp chất, nghiên cứu những vấn đề khó khăn nhất về tính di truyền, về cơ cấu hoạt động của hệ thần kinh...
Trong y học bằng phương pháp thống kê và máy tính điện tử người ta có thể cải tiến phương pháp chuẩn đoán bệnh cho chính xác hơn. Xuất phát từ vấn đề tìm Algorit để có thể dịch được các thứ tiếng bằng máy tính điện tử, người ta dùng logic toán để nghiên cứu quy luật cấu trúc của ngôn ngữ mà từ đó một ngành toán học mới - ngôn ngữ toán ra đời. Ở các nước tiên tiến, phương pháp của toán học thống kê, logic toán, lý thuyết thông tin... được sử dụng ngày càng rộng rãi trong công tác thư viện để nâng cao hiệu quả phục vụ và tính khoa học của ngành. Việc điều tra xã hội học để nghiên cứu tâm lý, thị hiếu của quần chúng trong các ngành văn hoá xã hội muốn đạt được kết quả sâu sắc chắc chắn cũng phải dùng các phương pháp của toán học.
Những ví dụ trên đây cho ta thấy một điều rõ ràng là toán học chính là cuộc sống, toán học và cuộc sống luôn đi liền với nhau. Mục đích của toán học là cải thiện cuộc sống, nhu cầu cuộc sống là động lực để toán học phát triển.